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From Nuclear Matter to Quark Matter

Nuclear Matter
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Color Super-
conductivity
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Early Evolution
of the Universe
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Density

hot topics in QGP
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Õ2µ⌫(t, x)

E

T=0

i�

O1µ⌫(t, x) = F

a
µ⇢F

a
⌫⇢(t, x) O2µ⌫(t, x) = �µ⌫F

a
⇢�F

a
⇢�(t, x)

c1(t) =
1
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�
+ c2(t)

h
Õ2µ⌫(t, x)�

D
Õ2µ⌫(t, x)

E

T=0

i�
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How to calculate Tμν on lattice?
Previous works and lessons

FlowQCD Collaboration 
　　　　　　　(2014-) 

We need a window a ⌧
p
8t ⌧ 1

2T
lattice artifact finite temporal length

Is there a small t region within the window where two 
loops contribution is negligible?

BW12

T=1.66Tc

(E+P)/T  (E-3P)/T  44
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Flow of quark field  Lüscher, JHEP 1304, 123 (2013)

@t�(t, x) = DµDµ�(t, x) �(t = 0, x) =  (x)

@t�̄(t, x) = �̄(t, x)
 �
Dµ
 �
Dµ �̄(t = 0, x) =  ̄(x)

Renormalization is needed for quark field
�R(t, x) = Z��0(t, x)

No more renormalization is needed for composite op.
(�̄(t, x)�(t, x))R = Z

2
� (�̄(t, x)�(t, x))0

No additive correction in chiral condensate

flow the gauge field simultaneously
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Three steps to calculate Tμν
1. Flow the gauge and quark field

2. Calculate VEV of flowed operators

How to calculate Tμν on lattice?

Wick contraction is a complication
6= (D(Aµ(t, x)) +m)�1

t

t=0

h�(t, x)�̄(t, y)iWick

no effective Lagrangian known!

we know the Lagrangian!

K†(t, y; 0, w)

SF (v, w)

K(t, x; 0, v)



How to calculate Tμν on lattice?
3. Multiply the coefficients and visit small t region

Õr
3µ⌫(t, x) ⌘ 'r(t)�̄r(t, x)

⇣
�µ
 !
D ⌫ + �⌫

 !
D µ

⌘
�r(t, x)

Õr
4µ⌫(t, x) ⌘ 'r(t)�µ⌫ �̄r(t, x)

 !
/D �r(t, x)

Õr
5µ⌫(t, x) ⌘ 'r(t)�µ⌫ �̄r(t, x)�r(t, x)

{Tµ⌫} (x)qMS
= lim

t!0

⇢
c3(t)

X

r=u,d,s

⇣
Õr

3µ⌫(t, x)� 2Õr
4µ⌫(t, x)�

D
Õr

3µ⌫(t, x)� 2Õr
4µ⌫(t, x)

E

T=0

⌘

+c4(t)
X

r=u,d,s

⇣
Õr

4µ⌫(t, x)�
D
Õr

4µ⌫(t, x)
E

T=0

⌘
+

X

r=u,d,s

c

r
5(t)

⇣
Õr

5µ⌫(t, x)�
D
Õr

5µ⌫(t, x)
E

T=0

⌘�

'r(t) ⌘
�6

(4⇡)2t2
D
�̄r(t, x)

 !
/D �r(t, x)

E

T=0

2
D
Õr

3µ⌫(t, x)
E

T=0
=

D
Õr

4µ⌫(t, x)
E

T=0
=

�6

(4⇡)2t2
�µ⌫



How to calculate Tμν on lattice?
3. Multiply the coefficients and visit small t region

c3(t) =
1

4

(
1 +

ḡ(1/
p
8t)2

(4⇡)2

✓
2 +

4

3
ln(432)

◆)

c4(t) =
1

(4⇡)2
ḡ(1/

p
8t)2

cr5(t) = �m̄r(1/
p
8t)

(
1 +

ḡ(1/
p
8t)2

(4⇡)2

✓
4� � 8 ln 2 +

14

3
+

4

3
ln(432)

◆)

Makino-Suzuki, PTEP 2014, 063B02 (2014)
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Numerical setups
 Iwasaki gauge action
 β=2.05 : a～0.07 [fm]
 Fixed scale method
 T=1/(aNt), Nt=16, 14, 12, 10, 8, 6, 4

 Nf=2+1 
 NP improved Wilson fermion 
 On an equal quark mass line

100 200 300 400 500

16 14 12 10 8 6

14 10 8 612 579
(β=1.90)

(β=2.05) T[MeV]

mπ/mρ~0.6

physical point

Tc

m⇡

m⇢
⇠ 0.6

32  xNt for T≠03

28  x56 for T=03
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Chiral condensate (preliminary)
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Chiral susceptibility (disconnected)
small t limit
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Chiral condensate (preliminary)
as a function of T
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Summary
 Flow method works well for EM tensor! 
 as powerful as the derivative method. 

 More suitable for Wilson fermion. 
 We have exciting results:

(E+P)/T  (E-3P)/T  
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 Lattice artifact is severe for Nt=4, 6
 We want work with fluctuation and correlator 

using the flow!


